skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Soffa, Mary Lou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks (DNN) are being used in a wide range of applications including safety-critical systems. Several DNN test gen- eration approaches have been proposed to generate fault-revealing test inputs. However, the existing test generation approaches do not systematically cover the input data distribution to test DNNs with diverse inputs, and none of the approaches investigate the re- lationship between rare inputs and faults. We propose cit4dnn, an automated black-box approach to generate DNN test sets that are feature-diverse and that comprise rare inputs. cit4dnn constructs diverse test sets by applying combinatorial interaction testing to the latent space of generative models and formulates constraints over the geometry of the latent space to generate rare and fault-revealing test inputs. Evaluation on a range of datasets and models shows that cit4dnn generated tests are more feature diverse than the state-of-the-art, and can target rare fault-revealing testing inputs more effectively than existing methods. 
    more » « less
  2. Testing deep neural networks (DNNs) has garnered great interest in the recent years due to their use in many applications. Black-box test adequacy measures are useful for guiding the testing process in covering the input domain. However, the absence of input specifications makes it challenging to apply black-box test adequacy measures in DNN testing. The Input Distribution Coverage (IDC) framework addresses this challenge by using a variational autoencoder to learn a low dimensional latent representation of the input distribution, and then using that latent space as a coverage domain for testing. IDC applies combinatorial interaction testing on a partitioning of the latent space to measure test adequacy. Empirical evaluation demonstrates that IDC is cost-effective, capable of detecting feature diversity in test inputs, and more sensitive than prior work to test inputs generated using different DNN test generation methods. The findings demonstrate that IDC overcomes several limitations of white-box DNN coverage approaches by discounting coverage from unrealistic inputs and enabling the calculation of test adequacy metrics that capture the feature diversity present in the input space of DNNs. 
    more » « less
  3. null (Ed.)
  4. The low cost of resource ownership and flexibility have led users to increasingly port their applications to the clouds. To fully realize the cost benefits of cloud services, users usually need to reliably know the execution performance of their applications. However, due to the random performance fluctuations experienced by cloud applications, the black box nature of public clouds and the cloud usage costs, testing on clouds to acquire accurate performance results is extremely difficult. In this paper, we present a novel cloud performance testing methodology called PT4Cloud. By employing non-parametric statistical approaches of likelihood theory and the bootstrap method, PT4Cloud provides reliable stop conditions to obtain highly accurate performance distributions with confidence bands. These statistical approaches also allow users to specify intuitive accuracy goals and easily trade between accuracy and testing cost. We evaluated PT4Cloud with 33 benchmark configurations on Amazon Web Service and Chameleon clouds. When compared with performance data obtained from extensive performance tests, PT4Cloud provides testing results with 95.4% accuracy on average while reducing the number of test runs by 62%. We also propose two test execution reduction techniques for PT4Cloud, which can reduce the number of test runs by 90.1% while retaining an average accuracy of 91%. We compared our technique to three other techniques and found that our results are much more accurate. 
    more » « less
  5. The paradigm shift of deploying applications to the cloud has introduced both opportunities and challenges. Although clouds use elasticity to scale resource usage at runtime to help meet an application’s performance requirements, developers are still challenged by unpredictable performance, little control of execution environment, and differences among cloud service providers, all while being charged for their cloud usages. Application performance stability is particularly affected by multi-tenancy in which the hardware is shared among varying applications and virtual machines. Developers porting their applications need to meet performance requirements, but testing on the cloud under the effects of performance uncertainty is difficult and expensive, due to high cloud usage costs. This paper presents a first approach to testing an application with typical inputs for how its performance will be affected by performance uncertainty, without incurring undue costs of bruteforce testing in the cloud. We specify cloud uncertainty testing criteria, design a test-based strategy to characterize the blackbox cloud’s performance distributions using these testing criteria, and support execution of tests to characterize the resource usage and cloud baseline performance of the application to be deployed. Importantly, we developed a smart test oracle that estimates the application’s performance with certain confidence levels using the above characterization test results and determines whether it will meet its performance requirements. We evaluated our testing approach on both the Chameleon cloud and Amazon web services; results indicate that this testing strategy shows promise as a cost-effective approach to test for performance effects of cloud uncertainty when porting an application to the cloud. 
    more » « less